Is My Object in This Video? Reconstruction-based Object Search in Videos

نویسندگان

  • Tan Yu
  • Jingjing Meng
  • Junsong Yuan
چکیده

This paper addresses the problem of video-level object instance search, which aims to retrieve the videos in the database that contain a given query object instance. Without prior knowledge about “when” and “where” an object of interest may appear in a video, determining “whether” a video contains the target object is computationally prohibitive, as it requires exhaustively matching the query against all possible spatial-temporal locations in each video that an object may appear. To alleviate the computational and memory cost, we propose the Reconstruction-based Object SEarch (ROSE) method. It characterizes a huge corpus of features of possible spatial-temporal locations in the video into the parameters of the reconstruction model. Since the memory cost of storing reconstruction model is much less than that of storing features of possible spatial-temporal locations in the video, the efficiency of the search is significantly boosted. Comprehensive experiments on three benchmark datasets demonstrate the promising performance of the proposed ROSE method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

A Time-Domain Method for Shape Reconstruction of a Target with Known Electrical Properties (RESEARCH NOTE)

This paper uses a method for shape reconstruction of a 2-D homogeneous object with arbitrary geometry and known electrical properties. In this method, the object is illuminated by a Gaussian pulse, modulated with sinusoidal carrier plane wave and the time domains’ footprint signal due to object presence is used for the shape reconstruction. A nonlinear feedback loop is used to minimize the diff...

متن کامل

Moving Object Extraction Based on Background Reconstruction

Object extraction from video is one of the most important areas of video processing in which objects from video sequences are extracted and used for many applications such as surveillance systems. This thesis describes the theoretical bases, development and testing of moving object detection framework. Many systems uses motion and color information to detect the moving object from the video seq...

متن کامل

Hybrid method for full identification of buried objects and surrounding media

This study describes a hybrid technique for identification of buried objects. The object’s shape and electromagnetic profile are reconstructed from evaluations of electrical permittivity and conductivity. The method suggests a combination of linear sampling and optimization. Linear sampling method (LSM) is used to recover shape and metaheuristic optimizations essential to reconstruct the inside...

متن کامل

Segmentation, Index and Summarization of Digital Video Content

Segmentation, Index and Summarization of Digital Video Content Di Zhong In this thesis, we propose and develop unique frameworks and methods for temporal and spatial video segmentation as well as object based video representation, indexing and retrieval at both the syntactic and the semantic level. First we demonstrate a robust and real-time temporal scene cut detection system that combines col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017